Özdeşliklerden Yararlanarak Çarpanlara Ayırma

* Tam kare ve iki kare farkı özdeşlikleri aşağıdakiler gibidir .

( x + y )2 = x2 + 2xy + y 2

( x – y )2 = x2 – 2xy + y 2

x2 – y 2 = ( x – y ) . ( x + y )

Bu özdeşliklerden yararlanarak ;

* x2 + 2xy + y 2 şeklindeki bir cebirsel ifadenin çarpanının ( x + y ) olacağını söyleyebiliriz .

= [ ( x + y )2 = ( x + y ) . ( x + y ) ]

* x2 – 2xy + y 2 şeklindeki bir cebirsel ifadenin çarpanının ( x – y ) olacağını söyleyebiliriz .

= [ ( x – y )2 = ( x – y ) . ( x – y ) ]

* x2 – y 2 şeklindeki bir cebirsel ifadenin çarpanlarının ( x – y ) ve ( x + y ) olacağını

söyleyebiliriz .




Denklem Ve Özdeşlik

* Eşitlik bilinmeyenin bazı değerleri için doğru oluyorsa bu eşitliğe denklem denir .

Örneğin ;

x + 1 = 5 eşitliğinde x = 4 olduğunda ” x + 1 = 5 ” eşitliği bir denklemdir .

* Bilinmeyenin her değeri için doğru olan eşitliklere özdeşlik denir .

Örneğin ;

2x + 2 = x + 2 + x eşitliğinde x yerine yazılacak her sayı için eşitlik sağlanacağından verilen

eşitlik özdeşliktir.